
Submitted to:
SYNT 2018

c© Rohin Shah, Sumith Kulal & Rastislav Bodik
This work is licensed under the
Creative Commons Attribution License.

Scalable Synthesis with Symbolic Syntax Graphs

Rohin Shah
UC Berkeley

rohinmshah@berkeley.edu

Sumith Kulal
IIT Bombay

sumith@cse.iitb.ac.in

Rastislav Bodik
University of Washington

bodik@cs.washington.edu

General-purpose program synthesizers face a tradeoff between having a rich vocabulary for
output programs and the time taken to discover a solution. One performance bottleneck
is the construction of a space of possible output programs that is both expressive and easy
to search. In this paper we achieve both richness and scalability using a new algorithm
for constructing symbolic syntax graphs out of easily specified components to represent the
space of output programs. Our algorithm ensures that any program in the space is type-safe
and only mutates values that are explicitly marked as mutable. It also shares structure
where possible and encodes programs in a straight-line format instead of the typical bushy-
tree format, which gives an inductive bias towards realistic programs. These optimizations
shrink the size of the space of programs, leading to more efficient synthesis, without sacrificing
expressiveness. We demonstrate the utility of our algorithm by implementing Syncro, a
system for synthesis of incremental operations. We evaluate our algorithm on a suite of
benchmarks and show that it performs significantly better than prior work.

1 Introduction

Program synthesis is the task of automatically finding a program that meets a high level specifi-
cation. Researchers have approached the problem by identifying a class of programs, formalizing
it with a domain-specific language, and creating an efficient synthesis algorithm for that domain
[30]. In component-based synthesis, this is done by providing a set of components that the
program can be built out of [16, 9, 10].

In order to implement a synthesis algorithm for a new domain, researchers can take one of
several approaches. In order of decreasing effort, they can build a new algorithm from scratch,
specialize a generic meta-algorithm with domain-specific operators [27], or leverage an exist-
ing framework that provides a general-purpose synthesis algorithm [29, 19]. However, when
leveraging an existing framework, scalability constraints make it necessary to build the space of
programs with a carefully constructed grammar, resulting in long development times.

We provide a novel algorithm for constructing symbolic syntax graphs, which represent
the program space compactly and can then be efficiently searched using an SMT solver. The
algorithm can be specialized to a domain by specifying constraints on the way each component
can be used, most notably through types. The algorithm works with both functional and
imperative code. Normally with imperative code, the programmer must specify many frame
conditions [23] that prevent changes to particular variables in order to prevent the synthesizer
from returning pathological solutions. We introduce a mutability analysis that instead asks the
user to whitelist particular variables as modifiable. The algorithm also encodes the program
space in a format that leads to better performance from the SMT solver by sharing structure
where possible. Finally, we structure the symbolic syntax graph as a sequence of temporary
variable definitions, rather than as an expression tree, in order to more finely control the space

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Scalable Synthesis with Symbolic Syntax Graphs

�� �� �� �� ��
perm 0 vv ((

��

2

��

3

��

4

��

1

uu

�� �� �� �� ��
inv 0

��

4

))

1

��

2

��

3

��

(a) If our input permutation is [0,2,3,4,1], then its
inverse is [0,4,1,2,3], as we can see by considering
their action on a list of five shapes. We now want to
modify perm by transposing the elements at indices
0 and 4. How should we modify inv?

(define perm (vector 0 2 3 4 1))
(define inverse (vector 0 4 1 2 3))

(define (transpose ! i j)
(define tmp (vector-ref perm i))
(vector-set ! perm i (vector-ref perm j))
(vector-set ! perm j tmp))

(transpose ! 0 4)
(fix-inverse ! 0 4)

;; Given perm , inverse , and transpose !, we
;; want a procedure fix-inverse ! that will
;; update inverse appropriately without
;; recomputing it from scratch .

(define (fix-inverse ! i j)
(vector-set ! inverse (vector-ref perm j) j)
(vector-set ! inverse (vector-ref perm i) i))

;; The solution that we want to synthesize
;; for fix-inverse !.

(b) Rosette code for permutation problem and the
solution.

Figure 1: The permutation inverse problem.

of programs and to bias the synthesizer towards more realistic programs. The resulting system
can be used both as a fast general-purpose expression synthesis tool, as well as a framework
upon which domain-specific systems can be built.

As a case study, we implement Syncro (Synthesis of Incremental Operations), which can
synthesize incremental updates ∆f given a from-scratch program f . Syncro is able to quickly
synthesize interesting programs from large search spaces, validating our approach.

Specifically, we make the following contributions:

1. A novel algorithm for constructing symbolic syntax graphs that automatically enforces
type safety and some frame conditions.

2. Optimizations that improve synthesis time compared to a simple recursive grammar.

3. A case study where we implement Syncro, a system for synthesizing incremental opera-
tions on data structures.

4. A comparison of our algorithm to existing expression synthesizers that finds that our
algorithm can synthesize programs faster with less programmer effort.

2 Overview

Consider the task shown in Figure 1. We have two permutations, represented as vectors (arrays)
of numbers, that are inverses of each other. We now transpose two elements in the first permu-
tation, and we want to update the second permutation so that it continues to be the inverse of
the first permutation. What code should we write?

This is a typical program synthesis problem that we could solve with a generic synthesis
framework, such as Sketch [19] or Rosette [29]. In Rosette, we would have to:

Rohin Shah, Sumith Kulal & Rastislav Bodik 3

• Define the space of programs to search over.
• Specify a correctness condition.
Given these pieces, Rosette will translate the semantics of the program and the correctness

condition to SMT formulas through symbolic execution. These formulas are then solved by an
off-the-shelf solver.

However, writing these pieces can be quite a lot of work for the programmer. Typically, to
define the space of programs, the programmer would write down a context-free grammar over
a symbolic language [5], which would generate a symbolic syntax graph (SSG) that encodes the
space of abstract syntax trees (ASTs) drawn from the grammar with a bound on the depth of
the tree. The grammar must be designed carefully in order to get synthesis to scale.

To reduce the effort that the programmer must put in, we would like to automate the process
of building the program space. We take the approach of component-based synthesis, where the
user specifies a set of components to use during synthesis. For example, in the permutation
example, we may have the vector-set! and vector-ref components. We can then write a
program space generator takes in a type and produces a symbolic syntax graph (SSG) such that
any program encoded by the SSG would produce a value of the given type when evaluated. This
can be implemented by first introducing a choice over which component to use at the current
node, and then recursively producing SSGs for the children with types consistent with the
chosen component. In addition, as described in Section 4, we can apply several optimizations,
such as subgraph sharing and common subexpression elimination, that reduce the size of the
search space or produce better encodings for the SMT solver. The resulting program space
outperforms handwritten grammars on large benchmarks.

Another issue is that when specifying the correctness condition, it is very easy to forget to
provide a relevant frame condition. For example, for our permutation example, the correctness
condition could be that perm and inverse must be inverses of each other. However, we must also
assert a frame condition that says that perm must remain the same – otherwise the synthesizer
may return the program that undoes the transposition, rather than updating inverse.

Instead of asking for frame conditions, we ask the programmer to specify which variables
are allowed to be mutated. For permutation, we specify that inverse can be mutated, but
permutation cannot. We use a novel mutability analysis to ensure that every program in the
search space only modifies values that originate from variables marked as mutable. This leads
to a performance improvement, since it reduces the size of the search space.

Once the symbolic syntax graph is constructed, it is combined with the correctness condition,
converted to an SMT formula, and solved, returning the solution shown in Figure 1.

3 Background: Symbolic Syntax Graphs

A symbolic syntax graph (SSG) is a data structure that allows us to represent a large space of
programs, such that we can efficiently use symbolic execution to simulate the results of running
each of the programs in the space. It is a generalization of an abstract syntax tree (AST) in
which in addition to concrete nodes (such as if and +), there can be choice nodes that choose
between their children based on a symbolic condition. It is a directed acyclic graph instead of
a tree because nodes can share children for efficiency.

In order to use SSGs for program synthesis, we must be able to efficiently interpret them
to check the correctness conditions. We focus on an implementation of SSGs in Rosette, which

4 Scalable Synthesis with Symbolic Syntax Graphs

uses symbolic execution to interpret SSGs.
Rosette [29] provides support for angelic execution, verification and synthesis. Users write

programs as if they only had to work on concrete inputs, and Rosette will automatically lift
the programs to work on symbolic inputs as well. In our context, we write an interpreter for
our language L in the standard way, as though it would only have to work on ASTs. We then
construct a symbolic syntax graph S using Rosette’s built in functions for constructing symbolic
values, and pass it in to the interpreter. Rosette will then use symbolic evaluation to run the
interpreter on S, producing a symbolic value representing the output of the computation that
can then be used in a correctness condition.
(require rosette /lib/ angelic

rosette /lib/ match)

;; Define the interpreter
(define (eval program val)

(match program
[(list function x y)

(function (eval x val) (eval y val))]
[’x val]
[other program]))

;; Build a symbolic program
(define fn (choose * + - *))
(define arg1 (choose * 1 2 3 ’x))
(define arg2 (choose * 1 2 3 ’x))
(define program (list fn arg1 arg2))

;; Define a symbolic input
(define-symbolic * input integer ?)
;; Synthesize the desired program
(define model

(synthesize
#: forall (list input)
#: guarantee
;; Correctness condition
(assert (equal ? (eval program input)

(+ input input input)))))

;; Evaluates to (* 3 x)
(evaluate program model)

Figure 2: Rosette code for synthesis. Our language consists of arithmetic functions of a variable
’x. We can use constants 1, 2, and 3, and the functions +, - and *. The symbolic syntax graph
program consists of all programs in the language up to depth 1.

call

choice

x321

choice

x321

choice

*-+

Figure 3: The symbolic syntax
graph created by the Rosette pro-
gram. The bold edges are the
edges chosen by the valuation to
give the program (* 3 x).

A complete example is shown in Figure 3. We consider
a simple language of arithmetic expressions that can have a
single variable which must be named x. The interpreter is
written in the straightforward way. To construct our SSG,
we use the Rosette function choose* to create choice nodes,
and use S-expressions for other internal nodes. The choose*
function creates a symbolic union whose value is determined
by fresh symbolic boolean variables created by Rosette. A
valuation for these boolean variables induces a valuation for
the SSG as a whole. We interpret the SSG over all possible
inputs, producing a symbolic value dependent both on input
and the symbolic boolean variables introduced by choose*,
and assert a correctness condition on this value. We then
ask Rosette to produce a valuation for the boolean variables that satisfies this specification for
any value of input. The returned valuation of boolean variables induces a valuation for the SSG,
which we use to produce our synthesized program.

Rosette also has built-in support for merging arbitrary Rosette values, including SSGs. When
we create a choice node that chooses between multiple SSGs, the choice node is propagated down
in order to shrink the resulting graph, as illustrated in Figure 4. This optimization is crucial for
efficiency and is performed automatically by Rosette whenever a new choice node is created.

The reader familiar with Rosette may wonder why we are not using define-synthax or other
synthesis-specific tools in Rosette. While such tools would simplify the presentation of this

Rohin Shah, Sumith Kulal & Rastislav Bodik 5

example, they are not general enough to support the algorithms in Section 4.

4 Constructing Symbolic Syntax Graphs

We now turn to the problem of constructing symbolic syntax graphs automatically. In Figure 3,
lines 12-16, we explicitly constructed the symbolic syntax graph of an appropriate depth with
the appropriate functions, terminals, and constants, and made sure that these were all combined
in a type-safe way. We would now like to generate the SSG automatically without sacrificing
performance.

4.1 An Algorithm using Components

When building a context-free grammar for a domain-specific language for program synthesis,
it is important to consider both which abstractions are available for use in the grammar, and
how the abstractions can be composed with each other. So, we ask the user to provide a set
of components, which correspond to abstractions or constructs in the domain-specific language.
Information about component composition is provided through types in most cases, but can also
be provided through more general constraints if necessary.

choice

call

yx*

call

zx-

call

yx+

call

choice

zy

xchoice

*-+

Figure 4: An example of merging in Rosette.
We initially want to choose between three ASTs.
Rather than creating a single choice node at the
top, Rosette merges the call nodes, and puts choice
nodes over the subexpressions where necessary.
Note that there must be constraints on the choice
node, for example to disallow the program (+ x z).
See [29] for details.

The basic operation of a component
is Make-node, which constructs an SSG
node given SSGs for the children nodes.
In order to produce performant SSGs, we
also need to enforce constraints, such as
type safety, over the SSGs. So, each
component f must implement Get-child-
constraints, which given a constraint
C, infers the constraints that the children
SSGs must satisfy in order for the SSG cre-
ated by f to satisfy C. Note that the con-
straints on each child must be independent
of each other. The specific form of the con-
straints will be discussed in future sections.

Now, given a set of components that im-
plement these two operations, we can con-
struct an SSG as shown in Algorithm 1.
For every component f , we recursively produce the SSGs for the children of f , and make an
SSG node out of that. We then introduce a choice node over all of these SSGs at the top level
and return that.

Let us consider the case where we do not impose any constraints on the SSG (or equivalently,
all constraints in Algorithm 1 are the true constraint, which is always satisfied). In this case,
if we had components corresponding to + and <, then we would generate an SSG that includes
the AST (+ (< x 3) x), which is not type safe. We assume that programs that are incorrect
in this way (that is, they are not successfully evaluated by the interpreter, whether due to type
errors, syntax errors, or others) raise an error in Rosette. This means that when designing the
operations in a domain-specific language, the operations should not fail silently when presented
with invalid inputs, but should instead raise an error.

6 Scalable Synthesis with Symbolic Syntax Graphs

During synthesis, Rosette will discard incorrect programs as soon as they generate an error.
So, even with no constraints on the SSG, Algorithm 1 is correct, in that we could perform
synthesis with the SSG it returns. The issue is performance – as the size of the SSG increases
and the number of possible types increases, the number of ill-typed programs represented by
the SSG grows drastically. Rosette then spends most of its time attempting to evaluate these
incorrect programs and discarding them when they fail. We must prevent most type unsafe
programs from being generated in the first place if we want to have scalable synthesis.

The constraint C in Algorithm 1 allows us to prune away bad programs, as long as we
implement the following:

R1. We must ask the user to specify the top-level constraint on the desired program (line 1).
R2. We must be able to check whether a given terminal satisfies a given constraint (line 3).
R3. For every component, we can infer the constraints on the children of the component that

ensure that the constraint on the overall SSG holds (line 8).

4.2 Type Constraints

Algorithm 1 SSG construction algorithm.
The constraint C can include type (Section 4.2),
syntactic (Section 4.3), and mutability informa-
tion (Section 4.4).
Require: F is a list of components
Require: V is a list of terminals
Require: C is a constraint that the SSG must satisfy
Require: d is the maximum depth of the SSG
1: function Create-SSG(F , V , C, d)
2: . Can use any terminal that satisfies C
3: O ← Filter(V,C)
4: if d = 0 then
5: return Choose(O)
6: for f ← F do
7: S ← []
8: Csubs ← Get-child-constraints(f,C)
9: if Csubs 6= Failure then

10: for csub← Csubs do
11: S ← S + Create-SSG(F,V,csub,d−

1)
12: if Failure /∈ S then
13: O ← O + Make-node(f,S)
14: return Choose(O)
15: function choose(L)
16: if len(L) = 0 then
17: return Failure
18: else
19: return Choice-node(L)

In order to generate only well-typed programs, we
add a desired type τ as part of the constraint C.
Then, Create-SSG must return an SSG such that
any valuation of that SSG will evaluate to a value
of type τ . We start with the Hindley-Milner type
system, so that we have a set of monotypes (vec-
tors, lists, integers, booleans, functions, etc.) and
parametric polymorphism. We extend the type
system with record types, enums, and subtyping
of monomorphic types.

According to requirement R1, we must now ask
the user to provide a type for the value computed
by the desired program. Any variables that we may
use during synthesis must also have types provided,
in order to satisfy R2. R3 implies that we must
be able to perform top-down type-based reasoning,
that is, given the type for the larger SSG, deduce
the types for the smaller child SSGs. In the case
where the component is a function such as +, we
must be able to infer the domain of the function
given its range. This is trivial for functions without
polymorphism, as the types for the child SSGs are
given by the domain of the function.

However, deducing the domains of polymorphic functions in a symbolic setting is challeng-
ing. Consider deriving the child types for vector-set!, which has type Vec(α,β)→ α→ β →
Void, with α ⊆ Index. Suppose that we have two vectors v1 and v2 that we could mutate, of
types Vec(Int, Int) and Vec(Int, Bool) respectively. We would like to deduce that the third
argument to vector-set! must be either an Int or a Bool, but since Get-child-constraints
must return constraints that are independent, we must deduce the type of the third argument

Rohin Shah, Sumith Kulal & Rastislav Bodik 7

from the type of vector-set! alone, without looking at v1 and v2, and so it seems as though we
are forced to conclude that the third argument can be any arbitrary type β.

One solution is to rewrite Algorithm 1 and allow the constraint on the third argument to
depend on the values of the first and second arguments. However, this results in a different
problem – when we are inferring the type for the third argument, we will now infer that it
is either Int or Bool depending on the value of the symbolic boolean formula that Rosette
introduced to choose between v1 and v2. This means that when we make a recursive call to
Create-SSG to generate the SSG for the third argument, we pass in a symbolic type, and so
any further reasoning on the types will itself be symbolic, generating large formulas due to path
explosion during symbolic execution. It is crucial that we avoid this, and make sure that all
arguments to create-SSG are concrete.

Our solution is deceptively simple. Since we have a relatively small number of terminals and
components, and a small bound d on the sizes of programs, we can simply enumerate all possible
monomorphic types that could be created by an ASG of size up to d, by instantiating every
polymorphic type with the concrete monomorphic types that it could be applied to. (Note that
this can still express a very large program space, since the program space grows exponentially in
d.) In the example above, we would replace the vector-set! component with two copies of itself,
one with type Vec(Int, Int) → Int → Int → Void, and the other with type Vec(Int, Bool) →
Int → Bool → Void, and then run Create-SSG with these two new components.

4.3 Syntax Constraints

Syntax constraints are used by components that correspond to special forms in order to ensure
that the child SSGs are syntactically valid. For our components, we only have one syntactic
constraint – for set!, the first child must be a variable, not a nested expression.

4.4 Mutability Constraints

Often when working with imperative programs, we must write frame conditions that specify
that certain variables remain unchanged after the program has executed. In the permutation
example, we need to ensure that permutation is not changed, since we only want to modify
inverse. If we don’t specify this frame condition, the solve may come up with the program that
simply undoes the transposition to permutation, since that satisfies our correctness condition
(that inverse and permutation are inverses of each other).

However, frame conditions are evaluated after the SSG has been constructed, and so they do
not prevent incorrect programs from being generated in the first place. As a result, the solver
may have to consider these incorrect programs and reject them for violating the frame condition.
We can instead use mutability constraints to avoid generating incorrect programs in the first
place, leading to improved performance. In addition, the user can now whitelist variables that
are allowed to be changed, rather than having to blacklist the (potentially many) variables that
cannot be changed.

The mutability constraint on an SSG is a single bit, either enabled or disabled. When
disabled, the mutability constraint is a no-op, and is always satisfied. When enabled, the SSG
must evaluate to a value that is allowed to be mutated. The user must specify for each terminal
whether it is allowed to be mutated. We must also add more information to our components.
For the purposes of mutability constraints, a component can have two properties:

8 Scalable Synthesis with Symbolic Syntax Graphs

ch

call

ch6

yx

ch5

yx

-

call

ch4

yx

ch3

yx

+

call

ch2

yx

ch1

wv

vec-ref

(a) No sharing of subgraphs.

ch

call

-

call

+

call

vec-ref

ch1

wv

ch2

yx

(b) Memoize Create-SSG.
This SSG cannot represent
(+ x y).

ch

call

-

call

+

call

vec-ref

ch1

wv

ch2

yx

ch3

yx

(c) Use the memoized SSG
only when it is provably safe.

Figure 5: Three different approaches to sharing subgraphs. In all cases, we want to represent
any program composed of a single call to vec-ref, + and -, with the vector variables v and w,
and the integer variables x and y. Note that these SSGs are shown before merging for the sake
of exposition.

1. Writer: These components mutate one or more of their arguments. Regardless of the mu-
tability constraint on this component, the mutability constraint on the mutated argument
must be enabled. For example, vector-set! is a writer component that always mutates
its first argument.

2. Reader: These components return a value read from one of their arguments. In this
case, if the mutability constraint is enabled for the reader component, then the mutability
constraint must also be enabled for the argument from which the reader component reads.
For example, if the mutability constraint is enabled and we are considering the vector-ref
component, then the first argument must have the mutability constraint enabled, but every
other argument will have it disabled.

It is possible for a component to be both a reader and a writer. If a component is not a
reader, then it can never satisfy the enabled mutability constraint, since it cannot return a value
allowed to be mutated.

4.5 Sharing Subgraphs

As presented so far, the generated SSGs can have many identical subgraphs. This is illustrated
in Figure 5a, where we are choosing between vector-ref, +, and -, and there are five different
subgraphs that all encode the SSG for programs of a certain depth that produce integers. Since
these subgraphs are all encoding the same program space, we might expect that we can do
better by sharing subgraphs. If we replace two separate subgraphs t1 and t2 by two copies
of t1, the two subgraphs will now share the boolean variables that control the choice nodes,
reducing the number of boolean variables in the SMT formula generated by Rosette and allowing
conflict clauses learned by the solver to apply to both subgraphs. In particular, with separate
subgraphs, if we have choice nodes c1 ∈ t1 and c2 ∈ t2, the solver can choose the values for c1

Rohin Shah, Sumith Kulal & Rastislav Bodik 9

and c2 independently. If we instead have two copies of c1, the solver can only choose a value of
c1, and the subgraphs must necessarily make the same choice.

A simple approach for sharing structure would be to simply memoize Create-SSG, so that
whenever it is called with the same arguments, it returns the previously generated SSG, as
illustrated in Figure 5b. However, this optimization is too strong, and eliminates programs that
we care about. Since all of the subgraphs are now identical, they must make the same choice at
each node, and so the SSG can no longer represent the program (+ x y) – it is forced to instead
choose (+ x x) or (+ y y). We can still take advantage of some memoization, as illustrated in
Figure 5c. If the SSG is generated in a bottom up fashion, then equivalent grandchildren of a
choice node (that don’t share a parent) can be shared without losing expressiveness. Intuitively,
for any two nodes t1 and t2 that have the same grandparent but different parents p1 and p2, any
valuation of the SSG must choose at most one out of p1 and p2 to include in the AST, and so
at most one out of t1 and t2 can be included in the AST, and so we don’t lose expressiveness by
requiring t1 and t2 to be the same.

4.6 Straight-Line Grammar

There are still a few issues with the construction of SSGs:
• There is no easy way to reuse common subexpressions. If the same expression is used in

two different parts of the same AST, the synthesizer must discover it twice.
• The majority of the programs encoded in the SSG are atypical. Most ASTs that the SSG

encodes are very bushy, that is, most of the leaves are at or near the maximum depth.
However, in realistic programs, there are typically only a few leaves near the maximum
depth, while most leaves are quite close to the root.

We can solve these problems by introducing temporary variables, which can store the results
of small subcomputations. The SSG then consists of a series of temporary variable definitions
whose values are given by small (depth 1) sub-SSGs, followed by a single small expression that
defines the return value. Now, in order to increase the size of the search space, we add in extra
temporary variable definitions, instead of increasing the maximum depth of the SSG.

We have to figure out what the types of the temporary variables should be, so that the
temporary variables to be used in subsequent parts of the SSG, and Create-sst can be called
with the right type as its argument. However, we do not know a priori what type of temporary
variables we need. We solve this in a similar way as with polymorphism – since we have a small
number of types, we simply create a temporary variable for each type. This results in rather
long and cumbersome programs, but most of the generated code is dead code and is removed in
a postprocessing step.

We hypothesize that this is more representative of realistic programs than bushy trees, and
so will provide a useful inductive bias so that the synthesizer has to consider a smaller set of
programs. Any program can be converted to the form of a sequence of temporary variable
definitions. However, if we consider the programs represented by bushy SSGs, the common
bushy ASGs will be converted to very long sequences of temporary variables (since they have
many intermediate nodes), whereas the more realistic programs with only a few leaves at high
depth will be converted to relatively short sequences. So, we should expect that putting a bound
on the temporary variables instead of the maximum depth would constrain us more closely to
realistic programs. We also test this hypothesis experimentally and find some evidence that it
is true in Section 6.2.1.

10 Scalable Synthesis with Symbolic Syntax Graphs

4.7 Extensibility

A key feature of Algorithm 1 is that it makes minimal demands on the components, which makes
it easy to add new components. If the new component is a procedure, we only need to specify
its type and the arguments it reads or writes. An example is given in Figure 10 in the appendix.

If the component is not a procedure, then it depends on the component in question. Some
special forms are just as easy to specify. For example, if can be specified in the same way as
a procedure. In general, the component must implement Get-child-constraints for type
constraints, mutability constraints and any syntax constraints it may have.

5 Case Study: Syncro

Figure 6: The problem setup for incrementality.
We are given a function f that computes output
O from input I. When we make a change ∆I to
I, we want an incremental update function ∆f
that produces ∆O, the change to O.

To demonstrate the utility of our algorithm,
we implement Syncro, a tool for synthe-
sis of incremental operations. Incremen-
tal computation allows the value of a pro-
gram to be updated efficiently upon small
changes to its inputs, leading to asymp-
totic speedups which are crucial for reason-
able performance in many domains. How-
ever, an incremental program is often more
complicated than its non-incremental coun-
terpart, so we would like to generate an in-
cremental program from a non-incremental
one.

(define int (Integer-type))
(define-symbolic LEN int)
(define (permutation ? lst)

(equal ? (sort lst <) (range LEN)))

(define-mutable perm (Vector-type LEN int)
#: invariant (permutation ? (vector- >list perm))
#: deltas
[(define (transpose ! [i int] [j int])

(define tmp (vector-ref perm i))
(vector-set ! perm i (vector-ref perm j))
(vector-set ! perm j tmp))])

(define-incr inverse (Vector-type LEN int)
(let ([r (make-vector LEN 0)])

(for ([i (range LEN)])
(vector-set ! r (vector-ref perm i) i))

r))

Figure 7: Syncro specification for the permu-
tation problem.

Consider again the permutation example
from Section 2. This is an example of an in-
cremental problem – we have a program that
computes the inverse of a permutation, and
we make a small change to the input by trans-
posing two elements in the permutation, and
we now want to update the inverse efficiently.
The full specification of this problem in Syn-
cro is given in Figure 7. Note that the specifi-
cation makes no reference to grammars, SSGs,
or correctness conditions.

Given this specification, we want to find
a fast in-place incremental program that is
from-scratch consistent, that is, running the
incremental program produces a state which
is equivalent to the state that we would get
by recomputing inverse from scratch. More formally, we want to solve:

∃∆f ∀I,∆I : O+ ∆f(I,∆I,O) = f(I+ ∆I) (1)

Rohin Shah, Sumith Kulal & Rastislav Bodik 11

where I is the input data structure (perm), O = f(I) is the output data structure (inverse),
∆I is the small change to the input I (transpose!), ∆f is the desired update function, and +
denotes the ”apply change” operation. This is illustrated in Figure 6.

Syncro generates a program from the specification that performs synthesis, shown at a high
level in Figure 8. The correctness condition is defined by Equation 1. In order to encode the ∀
quantifiers, we need to generate symbolic versions of I and ∆I that Rosette can then quantify
over. This is done by implementing a function sym that given a type can produce a symbolic
value encoding all concrete values of that type up to a certain size.

At the top level call to create-SSG, the list of terminals includes all of the variables defined
in the specification (for which we have type information), all of which are marked not mutable,
except for the one variable we do want to mutate (inverse in this case). We use a predefined set
of default components that includes vector-ref and vector-set!, which are enough to solve the
permutation problem, though the user can add more components if she wishes. The generated
SSG should return type void, since we care about statements with side effects. The maximum
depth of the generated SSG can be controlled through a command line flag.
(define perm (sym (Vector-type LEN int)))
(define i (sym int))
(define j (sym int))
(assume (permutation? (vector->list perm)))

(define inverse (compute-inverse))
(transpose! i j) ;; Mutate perm
(assume (permutation? (vector->list perm)))
(define expected-inverse (compute-inverse))

;; Search space of programs that fix inverse
(make-and-run-symbolic-program)
(synthesize
;; For every input and delta
#: forall (list perm i j)
#: guarantee
;; It is as though we recomputed from scratch
(assert (equal ? inverse expected-inverse)))

Figure 8: Pseudocode for the Rosette program generated from the specification in Figure 7. The
highlighted code is taken directly from the specification, where compute-inverse refers to the
expression used to compute inverse from scratch. sym is a function that, given a type, produces
a symbolic value representing all possible concrete values of that type up to a certain size.

6 Evaluation

We performed an experimental evaluation of our algorithm to test its expressiveness and scal-
ability compared to existing alternatives, and to evaluate each of our proposed optimizations.
We sought to answer the following questions:

1. Is it scalable? Can we solve new challenging benchmarks that prior work struggles with?

2. Do each of the optimizations result in performance improvements?

3. Does a straight-line grammar provide a better inductive bias, populating the search space
with more realistic programs?

4. Does our algorithm work well in a domain-specific tool, where the parameters may not be
set perfectly?

Our experiments provide affirmative answers to all of the questions above. All experiments
were carried out on a 2 core, 2.00 GHz, Intel Core i7 processor, 8GB RAM, running the Ubuntu
operating system, with a timeout of 1 hour.

12 Scalable Synthesis with Symbolic Syntax Graphs

Benchmark Description |Sol| |LSpace| |TSpace| Time(s)
Incremental updates for:

Skosette Manipulation of an array of booleans. 10 2ˆ18 2ˆ13 0.2
Permutation Permutation inverse (see Figure 1) 16 2ˆ39 2ˆ28 0.3
Exists Data structure that checks 50 2ˆ72 2ˆ80 0.6

∃x : φ(x) given |{x : φ(x)}|
Dynamic programming recurrences:

Count change Count the number of ways to make change. 26 2ˆ75 2ˆ395 2685.1
Edit distance Compute edit distance between two strings. 51 2ˆ525 2ˆ7022 TO

Table 1: The suite of expression synthesis benchmarks.

6.1 Comparison to Prior Work

We consider Sketch [19] and Bonsai [7]. Sketch is a system that is primarily aimed at performing
arbitrary program synthesis, and so is a natural point to compare against. Bonsai is built on
top of Rosette and is aimed at detecting bugs in type systems. It proposes a new way of
encoding spaces of programs called Bonsai trees, which could be used instead of our symbolic
syntax graphs. Note that Bonsai trees were designed to make symbolic evaluation and merging
of program spaces efficient, whereas in program synthesis the bottleneck is typically the solver
time. We include Bonsai as a point to compare against anyway because it is the only other work
we know of that builds a new encoding for program spaces in Rosette.

We use the set of benchmarks in Table 1. We selected three benchmarks from our suite of
incremental benchmarks with a range of difficulties and synthesized update rules by providing
input-output examples. We also use two dynamic programming problems, in which we synthesize
the required recurrence relation. For all benchmarks, we developed a minimal solution by hand,
and report the number of nodes as the solution size. We report the handwritten solution instead
of the synthesized one because the solver may not produce minimal solutions. We also report
program space sizes (LSpace and TSpace), discussed further in Section 6.2.1.

For each benchmark, we manually developed a grammar for Bonsai and Sketch, using the
same components as in our algorithm. These grammars ensured type safety, and in the case of
Sketch, we wrote the grammars so that they would share subgraphs where it was natural to do
so, though our algorithm shares more subgraphs because it can optimize across all components
at the same depth, even ones that produce different types. Unfortunately, Bonsai does not give
us enough control over the grammar to share subtrees. The depth of each grammar was set to
be the minimum number for which we actually could find a solution.

The results are given in Figure 9a, and show that our algorithm outperforms Sketch and
Bonsai on all benchmarks except one, where all three algorithms time out. We solve one new
benchmark, count-change, that neither Sketch nor Bonsai are able to solve.

6.2 Effect of each Optimization

In order to quantify the benefits of optimizations, we modified our algorithm to selectively disable
type analysis, mutability analysis, subtree sharing, and straight line grammar. We evaluated
the expression synthesis benchmarks from Table 1 once with each optimization disabled.

The results are shown in Figure 9b. We can see that unsurprisingly the most important

Rohin Shah, Sumith Kulal & Rastislav Bodik 13

optimization is the type analysis, which eliminates a huge set of ill-typed programs. Focusing
primarily on the larger benchmarks, we can see that as the benchmarks get larger, the straight-
line grammar becomes more useful; we discuss this phenomenon below. The sharing of subgraphs
does not benefit the smaller benchmarks but it was necessary to solve count-change, and so is
likely important for larger benchmarks.

6.2.1 Inductive Bias of the Straight Line Grammar

skosette permutation exists count-change edit-distance
Benchmarks

1

2

3

4

5

6

7

8

9

R
a
ti

o
 o

f
ti

m
e
 t

a
ke

n
 (

ti
m

e
/S

y
n

cr
o

 t
im

e
)

1.0 1.0 1.0 1.0

TO

3.5

7.3

1.7

TO TO2195.3

8.3

TO TO TO

Comparison of Expression Synthesis times across tools

Syncro Sketch Bonsai

(a) Times taken to solve the expres-
sion synthesis benchmarks, relative
to our algorithm’s time.

skosette permutation exists count-change edit-distance
Benchmarks

1

2

3

4

R
a
ti
o
 o
f
ti
m
e
 t
a
ke
n
 (
ti
m
e
/S
y
n
cr
o
 t
im

e
)

1.0 1.0 1.0 1.0

TO

0.9
0.7

3.4

TO TO

0.9 1.0 0.9

TO TO

1.9

1.3
1.4

TO TO10.4 14.6 341.6 TO TO

Comparison of Expression Synthesis times across variants of Syncro

Syncro no-temps no-sharing no-mut no-type

(b) Times taken by variants of our
algorithm, relative to our algorithm
with all optimizations enabled.

Figure 9: Evaluation graphs.

In Section 4.6, we hypothesized that the straight line
grammar represents more realistic programs, compared to
Create-sst which consists mainly of bushy ASTs. To test
this, in Table 1 we measure program space sizes modulo in-
teger constants; that is, we consider the programs (+ x 1)
and (+ x 2) to be the same. We do this because otherwise
the program space size would be dominated by the number
of possible choices of values for integer constants, which is
not useful for comparing the two grammars. LSpace is the
program space generated by the straight-line grammar while
TSpace is the program space generated when using Create-
sst. In both cases, we choose the smallest instantiation of
the grammar in which synthesis still succeeds. In cases where
synthesis never succeeded due to timeout, we report the size
of the smallest instantiation of the grammar that we know
contains a correct solution.

For small benchmarks (depth of around 2), the two
approaches are roughly comparable, because the program
spaces are small enough that any variations are minor and
unimportant. However, for larger benchmarks, the straight
line grammar creates smaller program spaces and so is much
more performant. This is because the bushiness of Create-
sst causes problems. For example, the optimal solution for
count change has only one node at depth 4 with children,
which forces us to increase the depth from 4 (program space
size 2150) to 5 (program space size 2395). The vast majority
of these 2395 programs have nearly all of their leaves at depth
5, unlike the optimal solution. In contrast, the straight-line
grammar produces a space of size 275. Similarly for edit dis-
tance we are forced to go from a space of size 21071 to one of
size 27022, even though most of the leaf nodes in the solution
have depth less than 5. Overall, this suggests that the straight line grammar does provide a
useful inductive bias.

6.3 Performance of Syncro

For evaluation of Syncro, we used the set of benchmarks described in Table 2. Unlike with
expression synthesis, we set all parameters to be the same across all benchmarks, since in a

14 Scalable Synthesis with Symbolic Syntax Graphs

Benchmark Description Size Time (s)
Permutation Permutation inverse (see Figure 1) 2ˆ221 153.2
Counting Count the number of objects assigned to a 2ˆ324 9.2

category, when category assignments change.
Exists Checks ∃x : φ(x) given counts |{x : φ(x)}| 2ˆ713 19.0
Swift Compute Markov Blankets in a 2ˆ283 56.8

Contingent Bayes Net when adding edges (see [31]).
Grades Compute grades from exam scores. 2ˆ194 93.0
Record Like Grades, but using structs to represent students. 2ˆ226 237.2
Set-union Compute the union of two sets. 2ˆ144 1.5

Table 2: Selected benchmarks used for incremental update synthesis, their description, size of
search space and time taken by Syncro. Complete table in Table 3 in the appendix.

realistic setting the user would write an incremental program and is not likely to tune the
underlying parameters away from the defaults. We use the straight-line grammar with all
optimizations enabled. The Size column lists the size of the constructed program space. The
Time column lists the total time taken by Syncro to solve the benchmark.

The search spaces for these benchmarks are much larger, even when solving the same problem
(Skosette, permutation, and exists). This is partly because the SSG is no longer the minimal
SSG required to solve the benchmark, but primarily it is because we use the full set of default
components, and there are many extra variables that are defined in the specification that are
used in the SSG but are not actually needed in the synthesized program. The solver must spend
additional time determining that these programs are not useful.

Despite the much larger search spaces, our algorithm is still able to find solutions in a
reasonable amount of time, solving every benchmark in under 5 minutes. Contrast this with
count-change from Table 1, which has a much smaller search space of size 275 but takes over half
an hour to solve, because there are no irrelevant variables or components. This illustrates a major
advantage of solving the entire problem using an SMT solver – it can very quickly determine
which portions of the formula are irrelevant and ignore those. If we built a domain-specific
synthesis algorithm, it seems distinctly more difficult to ensure that this property holds.

7 Related Work

Expression synthesis is an active area of research, with many algorithms for synthesis of func-
tional programs [26, 11, 17]. Sketch [19] and Rosette [29] can be used for expression synthesis
of both functional and imperative programs. Our work makes it easier and faster to synthesize
imperative programs in Rosette, and similar ideas could be used for Sketch as well. In particular,
the straight line grammar should provide similarly good speedups for Sketch.

Bonsai [7] also builds on top of Rosette to introduce a new encoding for the space of programs
called Bonsai trees, that allow for efficient merging, leading to efficient symbolic evaluation,
which can then be used to check the soundness of type systems. However, Bonsai trees do not
work well for expression synthesis, primarily because the bottleneck is now solver time and not
symbolic execution. Metasketches [6] allow users to solve the optimal synthesis problem, where
we want to find a correct program that minimizes a cost. They also allow us to parallelize the

Rohin Shah, Sumith Kulal & Rastislav Bodik 15

solver search by cutting up the program space into many parts, and searching over each part
in parallel. Each individual part of a metasketch is a symbolic syntax graph, and so in future
work we would like to combine the two approaches in order to get the best of both worlds.

Component-based synthesis was introduced in [16] and has been used recently for synthesis
of API calls [10] and table transformations [9]. Besides component-based synthesis, other frame-
works have also been developed to generalize domain-specific synthesis algorithms, by separating
the generic synthesis algorithm from the domain-specific details [27, 5]. Our work can be seen as
a way to provide general-purpose component-based synthesis, with very minimal requirements
on the information needed for each component (usually just a type).

Synthesis of incremental update rules has been briefly studied in [15], where it is used as
an example application for an inductive synthesis algorithm. However, the algorithm works on
statements in logic which are then translated into imperative code, so it would not work for
general-purpose imperative expression synthesis without axiomatizing an imperative program-
ming language into first-order logic.

General dynamic incremental computation for functional programs was first introduced with
self-adjusting computation [1]. Later work generated it automatically with type annotations [8]
and applied it to imperative programs [2]. It continues to be improved today in Adapton [13, 12].
It works by propagating changes to the inputs through a dependency graph, though differential
dataflow [24] works with deltas instead. These systems get big asymptotic speedups on large,
complex programs that Syncro cannot scale to. However, maintaining internal data structures
leads to large runtime overhead, and they usually do not find the optimal solution. Syncro can
work with both changes in inputs as well as new values, and has more context and knowledge
since the program is represented as an SMT formula. For example, the permutation solution in
Figure 1 is only correct because of the invariant that the input array must be a permutation,
which other tools would not be able to use or understand.

There are also several techniques for static incremental computation, that rely on static
analysis of programs [25, 20, 22]. In the databases literature, researchers focus on solving the
incremental view maintenance problem, which aims to keep the view of an underlying table up
to date as the data is changed [3, 18]. However, these systems cannot take into account context
from the program or hints from the user, and they too would not be able to solve permutation
(Figure 7) since they cannot use the invariant that the input array must be a permutation.

8 Conclusion and Future Work

We presented an algorithm for automatically constructing symbolic syntax graphs (SSGs) from
components with type information, leading to efficient expression synthesis. We used this al-
gorithm to implement Syncro, which can synthesize incremental update rules for interesting
programs, including one new benchmark that prior work times out on.

An immediate direction for future work is to integrate our approach with metasketches [6]
to combine the advantages of both. Another direction is to explore the straight-line encoding
in more detail – while it does provide a useful inductive bias, decreasing the size of the search
space, the solver finds it harder to reason about this encoding of the program. How can we get
the benefit of better inductive bias without losing performance to suboptimal encodings?

16 Scalable Synthesis with Symbolic Syntax Graphs

References
[1] Umut A. Acar (2005): Self-adjusting Computation. Ph.D. thesis, Pittsburgh, PA, USA. AAI3166271.
[2] Umut A. Acar, Amal Ahmed & Matthias Blume (2008): Imperative Self-adjusting Computation. In:

Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’08, ACM, New York, NY, USA, pp. 309–322, doi:10.1145/1328438.1328476.
Available at http://doi.acm.org/10.1145/1328438.1328476.

[3] Yanif Ahmad, Oliver Kennedy, Christoph Koch & Milos Nikolic (2012): DBToaster: Higher-order
Delta Processing for Dynamic, Frequently Fresh Views. Proc. VLDB Endow. 5(10), pp. 968–979,
doi:10.14778/2336664.2336670. Available at http://dx.doi.org/10.14778/2336664.2336670.

[4] David M. Blei, Andrew Y. Ng & Michael I. Jordan (2003): Latent Dirichlet Allocation. J. Mach.
Learn. Res. 3, pp. 993–1022. Available at http://dl.acm.org/citation.cfm?id=944919.944937.

[5] Rastislav Bod́ık, Kartik Chandra, Phitchaya Mangpo Phothilimthana & Nathaniel Yazdani (2017):
Domain-Specific Symbolic Compilation. In Benjamin S. Lerner, Rastislav Bod́ık & Shriram Kr-
ishnamurthi, editors: 2nd Summit on Advances in Programming Languages (SNAPL 2017), Leib-
niz International Proceedings in Informatics (LIPIcs) 71, Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, pp. 2:1–2:17, doi:10.4230/LIPIcs.SNAPL.2017.2. Available at
http://drops.dagstuhl.de/opus/volltexte/2017/7133.

[6] James Bornholt, Emina Torlak, Dan Grossman & Luis Ceze (2016): Optimizing Synthesis with
Metasketches. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, ACM, New York, NY, USA, pp. 775–788,
doi:10.1145/2837614.2837666. Available at http://doi.acm.org/10.1145/2837614.2837666.

[7] Kartik Chandra & Rastislav Bod́ık (2017): Bonsai: Synthesis-Based Reasoning for Type Systems.
CoRR abs/1708.00551. Available at http://arxiv.org/abs/1708.00551.

[8] Yan Chen, Joshua Dunfield & Umut A. Acar (2012): Type-directed Automatic Incrementalization.
In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, ACM, New York, NY, USA, pp. 299–310, doi:10.1145/2254064.2254100.
Available at http://doi.acm.org/10.1145/2254064.2254100.

[9] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig & Swarat Chaudhuri (2017): Component-
based Synthesis of Table Consolidation and Transformation Tasks from Examples. In: Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, ACM, New York, NY, USA, pp. 422–436, doi:10.1145/3062341.3062351. Available at
http://doi.acm.org/10.1145/3062341.3062351.

[10] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig & Thomas W. Reps (2017): Component-
based Synthesis for Complex APIs. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, ACM, New York, NY, USA, pp. 599–612,
doi:10.1145/3009837.3009851. Available at http://doi.acm.org/10.1145/3009837.3009851.

[11] Jonathan Frankle, Peter-Michael Osera, David Walker & Steve Zdancewic (2016): Example-directed
Synthesis: A Type-theoretic Interpretation. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, ACM, New York, NY,
USA, pp. 802–815, doi:10.1145/2837614.2837629. Available at http://doi.acm.org/10.1145/
2837614.2837629.

[12] Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S. Foster, Michael
Hicks & David Van Horn (2015): Incremental Computation with Names. In: Proceedings
of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2015, ACM, New York, NY, USA, pp. 748–766,
doi:10.1145/2814270.2814305. Available at http://doi.acm.org/10.1145/2814270.2814305.

[13] Matthew A. Hammer, Khoo Yit Phang, Michael Hicks & Jeffrey S. Foster (2014): Adapton: Com-
posable, Demand-driven Incremental Computation. In: Proceedings of the 35th ACM SIGPLAN

http://dx.doi.org/10.1145/1328438.1328476
http://doi.acm.org/10.1145/1328438.1328476
http://dx.doi.org/10.14778/2336664.2336670
http://dx.doi.org/10.14778/2336664.2336670
http://dl.acm.org/citation.cfm?id=944919.944937
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.2
http://drops.dagstuhl.de/opus/volltexte/2017/7133
http://dx.doi.org/10.1145/2837614.2837666
http://doi.acm.org/10.1145/2837614.2837666
http://arxiv.org/abs/1708.00551
http://dx.doi.org/10.1145/2254064.2254100
http://doi.acm.org/10.1145/2254064.2254100
http://dx.doi.org/10.1145/3062341.3062351
http://doi.acm.org/10.1145/3062341.3062351
http://dx.doi.org/10.1145/3009837.3009851
http://doi.acm.org/10.1145/3009837.3009851
http://dx.doi.org/10.1145/2837614.2837629
http://doi.acm.org/10.1145/2837614.2837629
http://doi.acm.org/10.1145/2837614.2837629
http://dx.doi.org/10.1145/2814270.2814305
http://doi.acm.org/10.1145/2814270.2814305

Rohin Shah, Sumith Kulal & Rastislav Bodik 17

Conference on Programming Language Design and Implementation, PLDI ’14, ACM, New York,
NY, USA, pp. 156–166, doi:10.1145/2594291.2594324. Available at http://doi.acm.org/10.1145/
2594291.2594324.

[14] Roger Hoover (1992): Alphonse: Incremental Computation As a Programming Abstraction. In: Pro-
ceedings of the ACM SIGPLAN 1992 Conference on Programming Language Design and Implemen-
tation, PLDI ’92, ACM, New York, NY, USA, pp. 261–272, doi:10.1145/143095.143139. Available
at http://doi.acm.org/10.1145/143095.143139.

[15] Shachar Itzhaky, Sumit Gulwani, Neil Immerman & Mooly Sagiv (2010): A Simple In-
ductive Synthesis Methodology and Its Applications. SIGPLAN Not. 45(10), pp. 36–46,
doi:10.1145/1932682.1869463. Available at http://doi.acm.org/10.1145/1932682.1869463.

[16] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia & Ashish Tiwari (2010): Oracle-guided Component-
based Program Synthesis. In: Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, ACM, New York, NY, USA, pp. 215–224,
doi:10.1145/1806799.1806833. Available at http://doi.acm.org/10.1145/1806799.1806833.

[17] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak & Philippe Suter (2013): Synthesis Modulo Recursive
Functions. In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’13, ACM, New York, NY, USA,
pp. 407–426, doi:10.1145/2509136.2509555. Available at http://doi.acm.org/10.1145/2509136.
2509555.

[18] Christoph Koch, Daniel Lupei & Val Tannen (2016): Incremental View Maintenance For Col-
lection Programming. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS ’16, ACM, New York, NY, USA, pp. 75–90,
doi:10.1145/2902251.2902286. Available at http://doi.acm.org/10.1145/2902251.2902286.

[19] Armando Solar Lezama, Leo Harrington & Rastislav Bodik Chair (2008): Program Synthesis By
Sketching. Technical Report.

[20] Yanhong A. Liu (2000): Efficiency by Incrementalization: An Introduction. Higher Order Symbol.
Comput. 13(4), pp. 289–313, doi:10.1023/A:1026547031739. Available at http://dx.doi.org/10.
1023/A:1026547031739.

[21] Yanhong A. Liu & Scott D. Stoller (2009): From Datalog Rules to Efficient Programs with Time and
Space Guarantees. ACM Transactions on Programming Languages and Systems 31(6), pp. 1–38.

[22] Yanhong A. Liu, Scott D. Stoller, Michael Gorbovitski, Tom Rothamel & Yanni Ellen Liu (2005):
Incrementalization Across Object Abstraction. In: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’05,
ACM, New York, NY, USA, pp. 473–486, doi:10.1145/1094811.1094848. Available at http://doi.
acm.org/10.1145/1094811.1094848.

[23] John McCarthy & Patrick J Hayes (1981): Some philosophical problems from the standpoint of
artificial intelligence. In: Readings in artificial intelligence, Elsevier, pp. 431–450.

[24] Frank D McSherry, Rebecca Isaacs, Michael A Isard & Derek G Murray (2013): Differential dataflow.
CIDR ’13.

[25] R. Paige (1981): Formal Differentiation: A Program Synthesis Technique. Computer Science Series,
UMI Research Press. Available at https://books.google.com/books?id=xNImAAAAMAAJ.

[26] Nadia Polikarpova, Ivan Kuraj & Armando Solar-Lezama (2016): Program Synthesis from Poly-
morphic Refinement Types. In: Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’16, ACM, New York, NY, USA, pp. 522–538,
doi:10.1145/2908080.2908093. Available at http://doi.acm.org/10.1145/2908080.2908093.

[27] Oleksandr Polozov & Sumit Gulwani (2015): FlashMeta: A Framework for Inductive Program Syn-
thesis. In: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, ACM, New York, NY, USA,

http://dx.doi.org/10.1145/2594291.2594324
http://doi.acm.org/10.1145/2594291.2594324
http://doi.acm.org/10.1145/2594291.2594324
http://dx.doi.org/10.1145/143095.143139
http://doi.acm.org/10.1145/143095.143139
http://dx.doi.org/10.1145/1932682.1869463
http://doi.acm.org/10.1145/1932682.1869463
http://dx.doi.org/10.1145/1806799.1806833
http://doi.acm.org/10.1145/1806799.1806833
http://dx.doi.org/10.1145/2509136.2509555
http://doi.acm.org/10.1145/2509136.2509555
http://doi.acm.org/10.1145/2509136.2509555
http://dx.doi.org/10.1145/2902251.2902286
http://doi.acm.org/10.1145/2902251.2902286
http://dx.doi.org/10.1023/A:1026547031739
http://dx.doi.org/10.1023/A:1026547031739
http://dx.doi.org/10.1023/A:1026547031739
http://dx.doi.org/10.1145/1094811.1094848
http://doi.acm.org/10.1145/1094811.1094848
http://doi.acm.org/10.1145/1094811.1094848
https://books.google.com/books?id=xNImAAAAMAAJ
http://dx.doi.org/10.1145/2908080.2908093
http://doi.acm.org/10.1145/2908080.2908093

18 Scalable Synthesis with Symbolic Syntax Graphs

pp. 107–126, doi:10.1145/2814270.2814310. Available at http://doi.acm.org/10.1145/2814270.
2814310.

[28] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth & Max Welling
(2008): Fast Collapsed Gibbs Sampling for Latent Dirichlet Allocation. In: Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’08, ACM, New York, NY, USA, pp. 569–577, doi:10.1145/1401890.1401960. Available at http:
//doi.acm.org/10.1145/1401890.1401960.

[29] Emina Torlak & Rastislav Bod́ık (2014): A Lightweight Symbolic Virtual Machine for Solver-
aided Host Languages. In: Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, ACM, New York, NY, USA, pp. 530–541,
doi:10.1145/2594291.2594340. Available at http://doi.acm.org/10.1145/2594291.2594340.

[30] Chenglong Wang, Alvin Cheung & Rastislav Bodik (2017): Synthesizing Highly Expres-
sive SQL Queries from Input-output Examples. SIGPLAN Not. 52(6), pp. 452–466,
doi:10.1145/3140587.3062365. Available at http://doi.acm.org/10.1145/3140587.3062365.

[31] Yi Wu, Lei Li, Stuart Russell & Rastislav Bod́ık (2016): Swift: Compiled Inference for Probabilistic
Programming Languages. In: Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp. 3637–3645. Available
at http://www.ijcai.org/Abstract/16/512.

[32] Limin Yao, David Mimno & Andrew McCallum (2009): Efficient Methods for Topic Model Inference
on Streaming Document Collections. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’09, ACM, New York, NY, USA,
pp. 937–946, doi:10.1145/1557019.1557121. Available at http://doi.acm.org/10.1145/1557019.
1557121.

http://dx.doi.org/10.1145/2814270.2814310
http://doi.acm.org/10.1145/2814270.2814310
http://doi.acm.org/10.1145/2814270.2814310
http://dx.doi.org/10.1145/1401890.1401960
http://doi.acm.org/10.1145/1401890.1401960
http://doi.acm.org/10.1145/1401890.1401960
http://dx.doi.org/10.1145/2594291.2594340
http://doi.acm.org/10.1145/2594291.2594340
http://dx.doi.org/10.1145/3140587.3062365
http://doi.acm.org/10.1145/3140587.3062365
http://www.ijcai.org/Abstract/16/512
http://dx.doi.org/10.1145/1557019.1557121
http://doi.acm.org/10.1145/1557019.1557121
http://doi.acm.org/10.1145/1557019.1557121

Rohin Shah, Sumith Kulal & Rastislav Bodik 19

9 Appendix

Figure 10 shows all of the code required to implement a new operator that increments an element
of a vector.
;; Rosette implementation of the procedure
(define (vec-incr ! v i)

(vector-set ! v i (+ 1 (vector-ref v i))))

;; Type of the operator
(define a (Type-var (Index-type)))
(define type

(-> (list (Vector-type a (Integer-type)) a)
(Void-type)
#: write-index 0))

;; Create the operator
(define-lifted [vec-incr ! vec-incr !ˆ type])

Figure 10: Implementation of the vec-incr! component.

Benchmark Description Size Time (s)
Skosette Manipulation of an array of booleans. 2ˆ265 32.7
Permutation Permutation inverse (see Figure 1) 2ˆ221 153.2
Permutation 2 Permutation with a new implementation of transpose. 2ˆ221 186.2
Counting 1 Count the number of objects assigned to a 2ˆ324 9.2

category, when category assignments change.
Counting 2 Like Counting 1, but with two kinds of categories. 2ˆ428 19.9
Exists Checks ∃x : φ(x) given counts |{x : φ(x)}| 2ˆ713 19.0
Swift Compute Markov Blankets in a 2ˆ283 56.8

Contingent Bayes Net when adding edges (see [31]).
Grades Compute grades from exam scores. 2ˆ194 93.0
Record Like Grades, but using structs to represent students. 2ˆ226 237.2
Swap grades Like Grades, but considering updates where 2ˆ211 3.8

two student’s grades are swapped.
Set-size Compute the size of a set. 2ˆ209 42.9
Set-union Compute the union of two sets. 2ˆ144 1.5
Set-difference Compute the difference between two sets. 2ˆ144 1.5
Sum Compute the sum of an array of numbers. 2ˆ211 30.9

Table 3: Complete set of benchmarks used for incremental update synthesis, their description,
size of search space and time taken by Syncro.

	Introduction
	Overview
	Background: Symbolic Syntax Graphs
	Constructing Symbolic Syntax Graphs
	An Algorithm using Components
	Type Constraints
	Syntax Constraints
	Mutability Constraints
	Sharing Subgraphs
	Straight-Line Grammar
	Extensibility

	Case Study: Syncro
	Evaluation
	Comparison to Prior Work
	Effect of each Optimization
	Inductive Bias of the Straight Line Grammar

	Performance of Syncro

	Related Work
	Conclusion and Future Work
	Appendix

